Once these massive cumbersome bureaucracies like DoHS with a budget of nearly $50 billion go into motion, it is impossible to slow them down or stop them. Bureaucrats are delusional having institutionalized the necessity to control "everything." We are also irrational and mistaken to think bureaucrats and politicians know what is best. These bureaucrats and politicians advocating for COVID lockdowns have overseen the destruction of the economy (estimated $36 billion in productivity lost per week during lockdowns) and death of Americans. What we are witnessing is the ultimate in human degradation with the subservience of human needs to the raw irrational power of institutionalized faceless bureaucracies.
Americans are being deprived of their livelihoods and are being forced into grinding poverty. If you are one of these bureaucrats or politicians advocating for lockdowns because you think you know what is best, you are responsible for a portion of the population to be consigned to death. The World Health Organization (WHO) has even admitted as much although there still remains controversy over this allegation. These insane bureaucrats are spending billions of dollars because they want "bureaucratic neatness" concerning COVID. Once the mind of these bureaucrats was triggered by COVID, a remorseless and terrifying Bolshevism characterizing these bureaucracies in America was unleashed.
The Scientists Who Simulate The End Of The World
________
Source: National Institute of Health
Targeted Social Distancing Designs for Pandemic Influenza
November 12, 2006
Targeted Social Distancing Designs for Pandemic Influenza
November 12, 2006
Robert J. Glass, corresponding author* Laura M. Glass,† Walter E. Beyeler,* and H. Jason Min*
Author information Copyright and License information Disclaimer
This article has been cited by other articles in PMC.
Abstract
Targeted social distancing to mitigate pandemic influenza can be designed through simulation of influenza's spread within local community social contact networks. We demonstrate this design for a stylized community representative of a small town in the United States. The critical importance of children and teenagers in transmission of influenza is first identified and targeted. For influenza as infectious as 1957–58 Asian flu (≈50% infected), closing schools and keeping children and teenagers at home reduced the attack rate by >90%. For more infectious strains, or transmission that is less focused on the young, adults and the work environment must also be targeted. Tailored to specific communities across the world, such design would yield local defenses against a highly virulent strain in the absence of vaccine and antiviral drugs.
Keywords: Influenza, social networks, social distance, computer simulation, nonlinear models, research
At the start of an influenza pandemic, effective vaccine and antiviral drugs may not be available to the general population (1,2). If the accompanying illness and death rates of the virus strain are high, how might a community respond to protect itself? Closing roads, restricting travel, and community-level quarantine will enter discussions (3,4). However, within a community, influenza spreads from person to person through the social contact network. Therefore, understanding and strategically controlling this network during a period of pandemic is critical.
We describe how social contact network–focused mitigation can be designed. At the foundation of the design process is a network-based simulation model for the spread of influenza. We apply this model to a community of 10,000 persons connected within an overlapping, stylized, social network representative of a small US town. After study of the unmitigated transmission of influenza within the community, we change the frequency of contact within targeted groups and build combinations of strategies that can contain the epidemic. Finally, we show how infectivity of the strain and underlying structure of the infectious contact network influence the design of social distancing strategies. In the absence of vaccine and antiviral drugs, design for specific communities would defend against highly virulent influenza.
Methods
The design process first creates an explicit social contact network in which persons are linked to others in a community. Spread of influenza within the network is then simulated by imposing behavioral rules for persons, their links, and the disease. These rules are modified to implement targeted mitigation strategies within the community, the effectiveness of which is evaluated (5).
Contact Network
A network is created by specifying groups of given sizes (or range of sizes) within which persons of specified ages interact (e.g., school classes, households, clubs). The average number of links per person within the group is also specified because cliques form or are imposed (e.g., seating in a classroom). This number is used to construct a within-group network that can take various forms. We used fully connected, random, or ring networks for each group. Random networks are formed by randomly choosing 2 persons within the group and linking them. This process is repeated until the number of links within the group yields the specified average (each person will have a different number of links). The ring is formed by first placing persons next to neighbors and linking them to form a complete circle. Additional links are then made to next nearest neighbors symmetrically around the ring. Finally, links within a group are given an average frequency of contact per day. With this approach, a network can be built from the experience of community members to exhibit the clustered yet small-world characteristics (6) and overlapping quality of a structured community (7,8).
Please go to National Institute of Health to read the entire study.
This article has been cited by other articles in PMC.
Abstract
Targeted social distancing to mitigate pandemic influenza can be designed through simulation of influenza's spread within local community social contact networks. We demonstrate this design for a stylized community representative of a small town in the United States. The critical importance of children and teenagers in transmission of influenza is first identified and targeted. For influenza as infectious as 1957–58 Asian flu (≈50% infected), closing schools and keeping children and teenagers at home reduced the attack rate by >90%. For more infectious strains, or transmission that is less focused on the young, adults and the work environment must also be targeted. Tailored to specific communities across the world, such design would yield local defenses against a highly virulent strain in the absence of vaccine and antiviral drugs.
Keywords: Influenza, social networks, social distance, computer simulation, nonlinear models, research
At the start of an influenza pandemic, effective vaccine and antiviral drugs may not be available to the general population (1,2). If the accompanying illness and death rates of the virus strain are high, how might a community respond to protect itself? Closing roads, restricting travel, and community-level quarantine will enter discussions (3,4). However, within a community, influenza spreads from person to person through the social contact network. Therefore, understanding and strategically controlling this network during a period of pandemic is critical.
We describe how social contact network–focused mitigation can be designed. At the foundation of the design process is a network-based simulation model for the spread of influenza. We apply this model to a community of 10,000 persons connected within an overlapping, stylized, social network representative of a small US town. After study of the unmitigated transmission of influenza within the community, we change the frequency of contact within targeted groups and build combinations of strategies that can contain the epidemic. Finally, we show how infectivity of the strain and underlying structure of the infectious contact network influence the design of social distancing strategies. In the absence of vaccine and antiviral drugs, design for specific communities would defend against highly virulent influenza.
Methods
The design process first creates an explicit social contact network in which persons are linked to others in a community. Spread of influenza within the network is then simulated by imposing behavioral rules for persons, their links, and the disease. These rules are modified to implement targeted mitigation strategies within the community, the effectiveness of which is evaluated (5).
Contact Network
A network is created by specifying groups of given sizes (or range of sizes) within which persons of specified ages interact (e.g., school classes, households, clubs). The average number of links per person within the group is also specified because cliques form or are imposed (e.g., seating in a classroom). This number is used to construct a within-group network that can take various forms. We used fully connected, random, or ring networks for each group. Random networks are formed by randomly choosing 2 persons within the group and linking them. This process is repeated until the number of links within the group yields the specified average (each person will have a different number of links). The ring is formed by first placing persons next to neighbors and linking them to form a complete circle. Additional links are then made to next nearest neighbors symmetrically around the ring. Finally, links within a group are given an average frequency of contact per day. With this approach, a network can be built from the experience of community members to exhibit the clustered yet small-world characteristics (6) and overlapping quality of a structured community (7,8).
Please go to National Institute of Health to read the entire study.
________
Related:
Class warfare continues...
The bureaucrats desktop handbook...
The anti-bureaucratic revolution...
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.